On occupation times in the red of L\'evy risk models

23 Jul 2019  ·  Landriault David, Li Bin, Lkabous Mohamed Amine ·

In this paper, we obtain analytical expression for the distribution of the occupation time in the red (below level $0$) up to an (independent) exponential horizon for spectrally negative L\'{e}vy risk processes and refracted spectrally negative L\'{e}vy risk processes. This result improves the existing literature in which only the Laplace transforms are known. Due to the close connection between occupation time and many other quantities, we provide a few applications of our results including future drawdown, inverse occupation time, Parisian ruin with exponential delay, and the last time at running maximum. By a further Laplace inversion to our results, we obtain the distribution of the occupation time up to a finite time horizon for refracted Brownian motion risk process and refracted Cram\'{e}r-Lundberg risk model with exponential claims.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here