On Sparsity in Overparametrised Shallow ReLU Networks

18 Jun 2020  ·  Jaume de Dios, Joan Bruna ·

The analysis of neural network training beyond their linearization regime remains an outstanding open question, even in the simplest setup of a single hidden-layer. The limit of infinitely wide networks provides an appealing route forward through the mean-field perspective, but a key challenge is to bring learning guarantees back to the finite-neuron setting, where practical algorithms operate. Towards closing this gap, and focusing on shallow neural networks, in this work we study the ability of different regularisation strategies to capture solutions requiring only a finite amount of neurons, even on the infinitely wide regime. Specifically, we consider (i) a form of implicit regularisation obtained by injecting noise into training targets [Blanc et al.~19], and (ii) the variation-norm regularisation [Bach~17], compatible with the mean-field scaling. Under mild assumptions on the activation function (satisfied for instance with ReLUs), we establish that both schemes are minimised by functions having only a finite number of neurons, irrespective of the amount of overparametrisation. We study the consequences of such property and describe the settings where one form of regularisation is favorable over the other.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here