On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case

30 May 2019  ·  Ngoc Huy Chau, Éric Moulines, Miklos Rásonyi, Sotirios Sabanis, Ying Zhang ·

We consider the problem of sampling from a target distribution, which is \emph {not necessarily logconcave}, in the context of empirical risk minimization and stochastic optimization as presented in Raginsky et al. (2017). Non-asymptotic analysis results are established in the $L^1$-Wasserstein distance for the behaviour of Stochastic Gradient Langevin Dynamics (SGLD) algorithms. We allow the estimation of gradients to be performed even in the presence of \emph{dependent} data streams. Our convergence estimates are sharper and \emph{uniform} in the number of iterations, in contrast to those in previous studies.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here