On Sufficient and Necessary Conditions in Bounded CTL: A Forgetting Approach

13 Mar 2020  ·  Renyan Feng, Erman Acar, Stefan Schlobach, Yisong Wang, Wanwei Liu ·

Computation Tree Logic (CTL) is one of the central formalisms in formal verification. As a specification language, it is used to express a property that the system at hand is expected to satisfy. From both the verification and the system design points of view, some information content of such property might become irrelevant for the system due to various reasons, e.g., it might become obsolete by time, or perhaps infeasible due to practical difficulties. Then, the problem arises on how to subtract such piece of information without altering the relevant system behaviour or violating the existing specifications over a given signature. Moreover, in such a scenario, two crucial notions are informative: the strongest necessary condition (SNC) and the weakest sufficient condition (WSC) of a given property. To address such a scenario in a principled way, we introduce a forgetting-based approach in CTL and show that it can be used to compute SNC and WSC of a property under a given model and over a given signature. We study its theoretical properties and also show that our notion of forgetting satisfies existing essential postulates of knowledge forgetting. Furthermore, we analyse the computational complexity of some basic reasoning tasks for the fragment CTL_AF in particular.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here