On Tensor Train Rank Minimization : Statistical Efficiency and Scalable Algorithm

Tensor train (TT) decomposition provides a space-efficient representation for higher-order tensors. Despite its advantage, we face two crucial limitations when we apply the TT decomposition to machine learning problems: the lack of statistical theory and of scalable algorithms. In this paper, we address the limitations. First, we introduce a convex relaxation of the TT decomposition problem and derive its error bound for the tensor completion task. Next, we develop a randomized optimization method, in which the time complexity is as efficient as the space complexity is. In experiments, we numerically confirm the derived bounds and empirically demonstrate the performance of our method with a real higher-order tensor.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here