On the Acceleration of L-BFGS with Second-Order Information and Stochastic Batches

14 Jul 2018  ·  Jie Liu, Yu Rong, Martin Takac, Junzhou Huang ·

This paper proposes a framework of L-BFGS based on the (approximate) second-order information with stochastic batches, as a novel approach to the finite-sum minimization problems. Different from the classical L-BFGS where stochastic batches lead to instability, we use a smooth estimate for the evaluations of the gradient differences while achieving acceleration by well-scaling the initial Hessians. We provide theoretical analyses for both convex and nonconvex cases. In addition, we demonstrate that within the popular applications of least-square and cross-entropy losses, the algorithm admits a simple implementation in the distributed environment. Numerical experiments support the efficiency of our algorithms.

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here