On the Complexity of Robust PCA and $\ell_1$-norm Low-Rank Matrix Approximation

30 Sep 2015  ·  Nicolas Gillis, Stephen A. Vavasis ·

The low-rank matrix approximation problem with respect to the component-wise $\ell_1$-norm ($\ell_1$-LRA), which is closely related to robust principal component analysis (PCA), has become a very popular tool in data mining and machine learning. Robust PCA aims at recovering a low-rank matrix that was perturbed with sparse noise, with applications for example in foreground-background video separation. Although $\ell_1$-LRA is strongly believed to be NP-hard, there is, to the best of our knowledge, no formal proof of this fact. In this paper, we prove that $\ell_1$-LRA is NP-hard, already in the rank-one case, using a reduction from MAX CUT. Our derivations draw interesting connections between $\ell_1$-LRA and several other well-known problems, namely, robust PCA, $\ell_0$-LRA, binary matrix factorization, a particular densest bipartite subgraph problem, the computation of the cut norm of $\{-1,+1\}$ matrices, and the discrete basis problem, which we all prove to be NP-hard.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods