On the Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators

28 Jul 2020  ·  Xuan Zhang, Lei Jiao, Ole-Christoffer Granmo, Morten Goodwin ·

The Tsetlin Machine (TM) is a recent machine learning algorithm with several distinct properties, such as interpretability, simplicity, and hardware-friendliness. Although numerous empirical evaluations report on its performance, the mathematical analysis of its convergence is still open. In this article, we analyze the convergence of the TM with only one clause involved for classification. More specifically, we examine two basic logical operators, namely, the "IDENTITY"- and "NOT" operators. Our analysis reveals that the TM, with just one clause, can converge correctly to the intended logical operator, learning from training data over an infinite time horizon. Besides, it can capture arbitrarily rare patterns and select the most accurate one when two candidate patterns are incompatible, by configuring a granularity parameter. The analysis of the convergence of the two basic operators lays the foundation for analyzing other logical operators. These analyses altogether, from a mathematical perspective, provide new insights on why TMs have obtained state-of-the-art performance on several pattern recognition problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here