On the emergence of simplex symmetry in the final and penultimate layers of neural network classifiers

10 Dec 2020  ·  Weinan E, Stephan Wojtowytsch ·

A recent numerical study observed that neural network classifiers enjoy a large degree of symmetry in the penultimate layer. Namely, if $h(x) = Af(x) +b$ where $A$ is a linear map and $f$ is the output of the penultimate layer of the network (after activation), then all data points $x_{i, 1}, \dots, x_{i, N_i}$ in a class $C_i$ are mapped to a single point $y_i$ by $f$ and the points $y_i$ are located at the vertices of a regular $k-1$-dimensional standard simplex in a high-dimensional Euclidean space. We explain this observation analytically in toy models for highly expressive deep neural networks. In complementary examples, we demonstrate rigorously that even the final output of the classifier $h$ is not uniform over data samples from a class $C_i$ if $h$ is a shallow network (or if the deeper layers do not bring the data samples into a convenient geometric configuration).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here