The Generalization Error of the Minimum-norm Solutions for Over-parameterized Neural Networks

15 Dec 2019  ·  Weinan E, Chao Ma, Lei Wu ·

We study the generalization properties of minimum-norm solutions for three over-parametrized machine learning models including the random feature model, the two-layer neural network model and the residual network model. We proved that for all three models, the generalization error for the minimum-norm solution is comparable to the Monte Carlo rate, up to some logarithmic terms, as long as the models are sufficiently over-parametrized.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here