On the Growth of Mistakes in Differentially Private Online Learning: A Lower Bound Perspective

26 Feb 2024  ·  Daniil Dmitriev, Kristóf Szabó, Amartya Sanyal ·

In this paper, we provide lower bounds for Differentially Private (DP) Online Learning algorithms. Our result shows that, for a broad class of $(\varepsilon,\delta)$-DP online algorithms, for $T$ such that $\log T\leq O(1 / \delta)$, the expected number of mistakes incurred by the algorithm grows as $\Omega(\log \frac{T}{\delta})$. This matches the upper bound obtained by Golowich and Livni (2021) and is in contrast to non-private online learning where the number of mistakes is independent of $T$. To the best of our knowledge, our work is the first result towards settling lower bounds for DP-Online learning and partially addresses the open question in Sanyal and Ramponi (2022).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here