On the Impact of CDL and TDL Augmentation for RF Fingerprinting under Impaired Channels

Cyber-physical systems have recently been used in several areas (such as connected and autonomous vehicles) due to their high maneuverability. On the other hand, they are susceptible to cyber-attacks. Radio frequency (RF) fingerprinting emerges as a promising approach. This work aims to analyze the impact of decoupling tapped delay line and clustered delay line (TDL+CDL) augmentation-driven deep learning (DL) on transmitter-specific fingerprints to discriminate malicious users from legitimate ones. This work also considers 5G-only-CDL, WiFi-only-TDL augmentation approaches. RF fingerprinting models are sensitive to changing channels and environmental conditions. For this reason, they should be considered during the deployment of a DL model. Data acquisition can be another option. Nonetheless, gathering samples under various conditions for a train set formation may be quite hard. Consequently, data acquisition may not be feasible. This work uses a dataset that includes 5G, 4G, and WiFi samples, and it empowers a CDL+TDL-based augmentation technique in order to boost the learning performance of the DL model. Numerical results show that CDL+TDL, 5G-only-CDL, and WiFi-only-TDL augmentation approaches achieve 87.59%, 81.63%, 79.21% accuracy on unobserved data while TDL/CDL augmentation technique and no augmentation approach result in 77.81% and 74.84% accuracy on unobserved data, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here