On the Linear Algebraic Structure of Distributed Word Representations

22 Nov 2015 Lisa Seung-Yeon Lee

In this work, we leverage the linear algebraic structure of distributed word representations to automatically extend knowledge bases and allow a machine to learn new facts about the world. Our goal is to extract structured facts from corpora in a simpler manner, without applying classifiers or patterns, and using only the co-occurrence statistics of words... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet