On the Nonlinear Distortion Characterization in Photovoltaic Modules for Visible Light Communication

14 Oct 2021  ·  Shuyan Chen, Liqiong Liu, Lian-Kuan Chen ·

Photovoltaic (PV) modules have been employed in visible light communication (VLC) for simultaneous energy harvesting and data reception. A PV-based receiver features easy optical alignment and self-powered operation. It is commonly assumed that PV modules in VLC have a linear optical-electrical response, which is generally true under high illumination levels. This paper will illustrate the exacerbated PV's nonlinear distortion when under typical indoor illumination. The nonlinearity of a PV module for different numbers of PV cells is also characterized. We investigated the transmission performance of a 1-Mbit/s PAM4 signal under different illuminance. Experimental results show that the bit-error rate (BER) first decreases and then increases with the increasing illuminance. Thus, an optimal illuminance to minimize BER exists. In addition, we demonstrated two distortion mitigation methods, namely localized distortion compensation lighting and post-distortion compensation. BER reduction from 3.2x10-1 to 2.6x10-3 and 2.8x10-2 to 1.5x10-2 are achieved with the two respective schemes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here