Paper

On the optimality of kernels for high-dimensional clustering

This paper studies the optimality of kernel methods in high-dimensional data clustering. Recent works have studied the large sample performance of kernel clustering in the high-dimensional regime, where Euclidean distance becomes less informative. However, it is unknown whether popular methods, such as kernel k-means, are optimal in this regime. We consider the problem of high-dimensional Gaussian clustering and show that, with the exponential kernel function, the sufficient conditions for partial recovery of clusters using the NP-hard kernel k-means objective matches the known information-theoretic limit up to a factor of $\sqrt{2}$ for large $k$. It also exactly matches the known upper bounds for the non-kernel setting. We also show that a semi-definite relaxation of the kernel k-means procedure matches up to constant factors, the spectral threshold, below which no polynomial-time algorithm is known to succeed. This is the first work that provides such optimality guarantees for the kernel k-means as well as its convex relaxation. Our proofs demonstrate the utility of the less known polynomial concentration results for random variables with exponentially decaying tails in a higher-order analysis of kernel methods.

Results in Papers With Code
(↓ scroll down to see all results)