On the Performance of Thompson Sampling on Logistic Bandits

12 May 2019Shi DongTengyu MaBenjamin Van Roy

We study the logistic bandit, in which rewards are binary with success probability $\exp(\beta a^\top \theta) / (1 + \exp(\beta a^\top \theta))$ and actions $a$ and coefficients $\theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $\beta$, we establish a regret bound for Thompson sampling that is independent of $\beta$... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet