On the Provable Advantage of Unsupervised Pretraining

2 Mar 2023  ·  Jiawei Ge, Shange Tang, Jianqing Fan, Chi Jin ·

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models $\Phi$ and the downstream task is specified by a class of prediction functions $\Psi$. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of $\tilde{\mathcal{O}}(\sqrt{\mathcal{C}_\Phi/m} + \sqrt{\mathcal{C}_\Psi/n})$ for downstream tasks, where $\mathcal{C}_\Phi, \mathcal{C}_\Psi$ are complexity measures of function classes $\Phi, \Psi$, and $m, n$ are the number of unlabeled and labeled data respectively. Comparing to the baseline of $\tilde{\mathcal{O}}(\sqrt{\mathcal{C}_{\Phi \circ \Psi}/n})$ achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when $m \gg n$ and $\mathcal{C}_{\Phi\circ \Psi} > \mathcal{C}_\Psi$. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here