On the Reflection of Sensitivity in the Generalization Error

25 Sep 2019  ·  Mahsa Forouzesh, Farnood Salehi, Patrick Thiran ·

Even though recent works have brought some insight into the performance improvement of techniques used in state-of-the-art deep-learning models, more work is needed to understand the generalization properties of over-parameterized deep neural networks. We shed light on this matter by linking the loss function to the output’s sensitivity to its input. We find a rather strong empirical relation between the output sensitivity and the variance in the bias-variance decomposition of the loss function, which hints on using sensitivity as a metric for comparing generalization performance of networks, without requiring labeled data. We find that sensitivity is decreased by applying popular methods which improve the generalization performance of the model, such as (1) using a deep network rather than a wide one, (2) adding convolutional layers to baseline classifiers instead of adding fully connected layers, (3) using batch normalization, dropout and max-pooling, and (4) applying parameter initialization techniques.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here