On the role of ML estimation and Bregman divergences in sparse representation of covariance and precision matrices

27 Oct 2018Branko BrkljačŽeljen Trpovski

Sparse representation of structured signals requires modelling strategies that maintain specific signal properties, in addition to preserving original information content and achieving simpler signal representation. Therefore, the major design challenge is to introduce adequate problem formulations and offer solutions that will efficiently lead to desired representations... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet