On the Role of Time in Learning

14 Jul 2019  ·  Alessandro Betti, Marco Gori ·

By and large the process of learning concepts that are embedded in time is regarded as quite a mature research topic. Hidden Markov models, recurrent neural networks are, amongst others, successful approaches to learning from temporal data. In this paper, we claim that the dominant approach minimizing appropriate risk functions defined over time by classic stochastic gradient might miss the deep interpretation of time given in other fields like physics. We show that a recent reformulation of learning according to the principle of Least Cognitive Action is better suited whenever time is involved in learning. The principle gives rise to a learning process that is driven by differential equations, that can somehow descrive the process within the same framework as other laws of nature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here