On the Sample Complexity of Two-Layer Networks: Lipschitz vs. Element-Wise Lipschitz Activation

17 Nov 2022  ·  Amit Daniely, Elad Granot ·

We investigate the sample complexity of bounded two-layer neural networks using different activation functions. In particular, we consider the class $$ \mathcal{H} = \left\{\textbf{x}\mapsto \langle \textbf{v}, \sigma \circ W\textbf{b} + \textbf{b} \rangle : \textbf{b}\in\mathbb{R}^d, W \in \mathbb{R}^{\mathcal{T}\times d}, \textbf{v} \in \mathbb{R}^{\mathcal{T}}\right\} $$ where the spectral norm of $W$ and $\textbf{v}$ is bounded by $O(1)$, the Frobenius norm of $W$ is bounded from its initialization by $R > 0$, and $\sigma$ is a Lipschitz activation function. We prove that if $\sigma$ is element-wise, then the sample complexity of $\mathcal{H}$ has only logarithmic dependency in width and that this complexity is tight, up to logarithmic factors. We further show that the element-wise property of $\sigma$ is essential for a logarithmic dependency bound in width, in the sense that there exist non-element-wise activation functions whose sample complexity is linear in width, for widths that can be up to exponential in the input dimension. For the upper bound, we use the recent approach for norm-based bounds named Approximate Description Length (ADL) by arXiv:1910.05697. We further develop new techniques and tools for this approach that will hopefully inspire future works.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here