On the Statistical Efficiency of Compositional Nonparametric Prediction

6 Apr 2017  ·  Yixi Xu, Jean Honorio, Xiao Wang ·

In this paper, we propose a compositional nonparametric method in which a model is expressed as a labeled binary tree of $2k+1$ nodes, where each node is either a summation, a multiplication, or the application of one of the $q$ basis functions to one of the $p$ covariates. We show that in order to recover a labeled binary tree from a given dataset, the sufficient number of samples is $O(k\log(pq)+\log(k!))$, and the necessary number of samples is $\Omega(k\log (pq)-\log(k!))$. We further propose a greedy algorithm for regression in order to validate our theoretical findings through synthetic experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here