On Transformations in Stochastic Gradient MCMC

7 Mar 2019  ·  Soma Yokoi, Takuma Otsuka, Issei Sato ·

Stochastic gradient Langevin dynamics (SGLD) is a computationally efficient sampler for Bayesian posterior inference given a large scale dataset. Although SGLD is designed for unbounded random variables, many practical models incorporate variables with boundaries such as non-negative ones or those in a finite interval. To bridge this gap, we consider mapping unbounded samples into the target interval. This paper reveals that several mapping approaches commonly used in the literature produces erroneous samples from theoretical and empirical perspectives. We show that the change of random variable using an invertible Lipschitz mapping function overcomes the pitfall as well as attains the weak convergence. Experiments demonstrate its efficacy for widely-used models with bounded latent variables including Bayesian non-negative matrix factorization and binary neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here