On Uncensored Mean First-Passage-Time Performance Experiments with Multiwalk in $\mathbb{R}^p$: a New Stochastic Optimization Algorithm

6 Dec 2018  ·  Franc Brglez ·

A rigorous empirical comparison of two stochastic solvers is important when one of the solvers is a prototype of a new algorithm such as multiwalk (MWA). When searching for global minima in $\mathbb{R}^p$, the key data structures of MWA include: $p$ rulers with each ruler assigned $m$ marks and a set of $p$ neighborhood matrices of size up to $m(m-2)$, where each entry represents absolute values of pairwise differences between $m$ marks. Before taking the next step, a controller links the tableau of neighborhood matrices and computes new and improved positions for each of the $m$ marks. The number of columns in each neighborhood matrix is denoted as the neighborhood radius $r_n \le m-2$. Any variant of the DEA (differential evolution algorithm) has an effective population neighborhood of radius not larger than 1. Uncensored first-passage-time performance experiments that vary the neighborhood radius of a MW-solver can thus be readily compared to existing variants of DE-solvers. The paper considers seven test cases of increasing complexity and demonstrates, under uncensored first-passage-time performance experiments: (1) significant variability in convergence rate for seven DE-based solver configurations, and (2) consistent, monotonic, and significantly faster rate of convergence for the MW-solver prototype as we increase the neighborhood radius from 4 to its maximum value.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here