Online Asynchronous Distributed Regression

16 Jul 2014 Gérard Biau Ryad Zenine

Distributed computing offers a high degree of flexibility to accommodate modern learning constraints and the ever increasing size of datasets involved in massive data issues. Drawing inspiration from the theory of distributed computation models developed in the context of gradient-type optimization algorithms, we present a consensus-based asynchronous distributed approach for nonparametric online regression and analyze some of its asymptotic properties... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet