Online convex optimization for constrained control of linear systems using a reference governor

16 Nov 2022  ·  Marko Nonhoff, Johannes Köhler, Matthias A. Müller ·

In this work, we propose a control scheme for linear systems subject to pointwise in time state and input constraints that aims to minimize time-varying and a priori unknown cost functions. The proposed controller is based on online convex optimization and a reference governor. In particular, we apply online gradient descent to track the time-varying and a priori unknown optimal steady state of the system. Moreover, we use a $\lambda$-contractive set to enforce constraint satisfaction and a sufficient convergence rate of the closed-loop system to the optimal steady state. We prove that the proposed scheme is recursively feasible, ensures that the state and input constraints are satisfied at all times, and achieves a dynamic regret that is linearly bounded by the variation of the cost functions. The algorithm's performance and constraint satisfaction is illustrated by means of a simulation example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here