Online Learning for Structured Loss Spaces

13 Jun 2017  ·  Siddharth Barman, Aditya Gopalan, Aadirupa Saha ·

We consider prediction with expert advice when the loss vectors are assumed to lie in a set described by the sum of atomic norm balls. We derive a regret bound for a general version of the online mirror descent (OMD) algorithm that uses a combination of regularizers, each adapted to the constituent atomic norms. The general result recovers standard OMD regret bounds, and yields regret bounds for new structured settings where the loss vectors are (i) noisy versions of points from a low-rank subspace, (ii) sparse vectors corrupted with noise, and (iii) sparse perturbations of low-rank vectors. For the problem of online learning with structured losses, we also show lower bounds on regret in terms of rank and sparsity of the source set of the loss vectors, which implies lower bounds for the above additive loss settings as well.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here