Online learning with kernel losses

27 Feb 2018  ·  Aldo Pacchiano, Niladri S. Chatterji, Peter L. Bartlett ·

We present a generalization of the adversarial linear bandits framework, where the underlying losses are kernel functions (with an associated reproducing kernel Hilbert space) rather than linear functions. We study a version of the exponential weights algorithm and bound its regret in this setting. Under conditions on the eigendecay of the kernel we provide a sharp characterization of the regret for this algorithm. When we have polynomial eigendecay $\mu_j \le \mathcal{O}(j^{-\beta})$, we find that the regret is bounded by $\mathcal{R}_n \le \mathcal{O}(n^{\beta/(2(\beta-1))})$; while under the assumption of exponential eigendecay $\mu_j \le \mathcal{O}(e^{-\beta j })$, we get an even tighter bound on the regret $\mathcal{R}_n \le \mathcal{O}(n^{1/2}\log(n)^{1/2})$. We also study the full information setting when the underlying losses are kernel functions and present an adapted exponential weights algorithm and a conditional gradient descent algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here