Online Monotone Games

19 Oct 2017  ·  Ian Gemp, Sridhar Mahadevan ·

Algorithmic game theory (AGT) focuses on the design and analysis of algorithms for interacting agents, with interactions rigorously formalized within the framework of games. Results from AGT find applications in domains such as online bidding auctions for web advertisements and network routing protocols. Monotone games are games where agent strategies naturally converge to an equilibrium state. Previous results in AGT have been obtained for convex, socially-convex, or smooth games, but not monotone games. Our primary theoretical contributions are defining the monotone game setting and its extension to the online setting, a new notion of regret for this setting, and accompanying algorithms that achieve sub-linear regret. We demonstrate the utility of online monotone game theory on a variety of problem domains including variational inequalities, reinforcement learning, and generative adversarial networks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here