Ontology-Style Relation Annotation: A Case Study

This paper proposes an Ontology-Style Relation (OSR) annotation approach. In conventional Relation Extraction (RE) datasets, relations are annotated as links between entity mentions. In contrast, in our OSR annotation, a relation is annotated as a relation mention (i.e., not a link but a node) and domain and range links are annotated from the relation mention to its argument entity mentions. We expect the following benefits: (1) the relation annotations can be easily converted to Resource Description Framework (RDF) triples to populate an Ontology, (2) some part of conventional RE tasks can be tackled as Named Entity Recognition (NER) tasks. The relation classes are limited to several RDF properties such as domain, range, and subClassOf, and (3) OSR annotations can be clear documentations of Ontology contents. As a case study, we converted an in-house corpus of Japanese traffic rules in conventional annotations into the OSR annotations and built a novel OSR-RoR (Rules of the Road) corpus. The inter-annotator agreements of the conversion were 85-87{\%}. We evaluated the performance of neural NER and RE tools on the conventional and OSR annotations. The experimental results showed that the OSR annotations make the RE task easier while introducing slight complexity into the NER task.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here