Operator learning with PCA-Net: upper and lower complexity bounds

28 Mar 2023  ·  Samuel Lanthaler ·

PCA-Net is a recently proposed neural operator architecture which combines principal component analysis (PCA) with neural networks to approximate operators between infinite-dimensional function spaces. The present work develops approximation theory for this approach, improving and significantly extending previous work in this direction: First, a novel universal approximation result is derived, under minimal assumptions on the underlying operator and the data-generating distribution. Then, two potential obstacles to efficient operator learning with PCA-Net are identified, and made precise through lower complexity bounds; the first relates to the complexity of the output distribution, measured by a slow decay of the PCA eigenvalues. The other obstacle relates to the inherent complexity of the space of operators between infinite-dimensional input and output spaces, resulting in a rigorous and quantifiable statement of a "curse of parametric complexity", an infinite-dimensional analogue of the well-known curse of dimensionality encountered in high-dimensional approximation problems. In addition to these lower bounds, upper complexity bounds are finally derived. A suitable smoothness criterion is shown to ensure an algebraic decay of the PCA eigenvalues. Furthermore, it is shown that PCA-Net can overcome the general curse for specific operators of interest, arising from the Darcy flow and the Navier-Stokes equations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods