Optimal and Adaptive Algorithms for Online Boosting

9 Feb 2015  ·  Alina Beygelzimer, Satyen Kale, Haipeng Luo ·

We study online boosting, the task of converting any weak online learner into a strong online learner. Based on a novel and natural definition of weak online learnability, we develop two online boosting algorithms. The first algorithm is an online version of boost-by-majority. By proving a matching lower bound, we show that this algorithm is essentially optimal in terms of the number of weak learners and the sample complexity needed to achieve a specified accuracy. This optimal algorithm is not adaptive however. Using tools from online loss minimization, we derive an adaptive online boosting algorithm that is also parameter-free, but not optimal. Both algorithms work with base learners that can handle example importance weights directly, as well as by rejection sampling examples with probability defined by the booster. Results are complemented with an extensive experimental study.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here