Optimal Attacks against Multiple Classifiers

ICLR 2019 Juan C. PerdomoYaron Singer

We study the problem of designing provably optimal adversarial noise algorithms that induce misclassification in settings where a learner aggregates decisions from multiple classifiers. Given the demonstrated vulnerability of state-of-the-art models to adversarial examples, recent efforts within the field of robust machine learning have focused on the use of ensemble classifiers as a way of boosting the robustness of individual models... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.