Optimal Efficiency-Envy Trade-Off via Optimal Transport

25 Sep 2022  ·  Steven Yin, Christian Kroer ·

We consider the problem of allocating a distribution of items to $n$ recipients where each recipient has to be allocated a fixed, prespecified fraction of all items, while ensuring that each recipient does not experience too much envy. We show that this problem can be formulated as a variant of the semi-discrete optimal transport (OT) problem, whose solution structure in this case has a concise representation and a simple geometric interpretation. Unlike existing literature that treats envy-freeness as a hard constraint, our formulation allows us to \emph{optimally} trade off efficiency and envy continuously. Additionally, we study the statistical properties of the space of our OT based allocation policies by showing a polynomial bound on the number of samples needed to approximate the optimal solution from samples. Our approach is suitable for large-scale fair allocation problems such as the blood donation matching problem, and we show numerically that it performs well on a prior realistic data simulator.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here