Optimal Inference in Contextual Stochastic Block Models

6 Jun 2023  ·  O. Duranthon, L. Zdeborová ·

The contextual stochastic block model (cSBM) was proposed for unsupervised community detection on attributed graphs where both the graph and the high-dimensional node information correlate with node labels. In the context of machine learning on graphs, the cSBM has been widely used as a synthetic dataset for evaluating the performance of graph-neural networks (GNNs) for semi-supervised node classification. We consider a probabilistic Bayes-optimal formulation of the inference problem and we derive a belief-propagation-based algorithm for the semi-supervised cSBM; we conjecture it is optimal in the considered setting and we provide its implementation. We show that there can be a considerable gap between the accuracy reached by this algorithm and the performance of the GNN architectures proposed in the literature. This suggests that the cSBM, along with the comparison to the performance of the optimal algorithm, readily accessible via our implementation, can be instrumental in the development of more performant GNN architectures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here