Optimal linear estimation under unknown nonlinear transform

Linear regression studies the problem of estimating a model parameter $\beta^* \in \mathbb{R}^p$, from $n$ observations $\{(y_i,\mathbf{x}_i)\}_{i=1}^n$ from linear model $y_i = \langle \mathbf{x}_i,\beta^* \rangle + \epsilon_i$. We consider a significant generalization in which the relationship between $\langle \mathbf{x}_i,\beta^* \rangle$ and $y_i$ is noisy, quantized to a single bit, potentially nonlinear, noninvertible, as well as unknown. This model is known as the single-index model in statistics, and, among other things, it represents a significant generalization of one-bit compressed sensing. We propose a novel spectral-based estimation procedure and show that we can recover $\beta^*$ in settings (i.e., classes of link function $f$) where previous algorithms fail. In general, our algorithm requires only very mild restrictions on the (unknown) functional relationship between $y_i$ and $\langle \mathbf{x}_i,\beta^* \rangle$. We also consider the high dimensional setting where $\beta^*$ is sparse ,and introduce a two-stage nonconvex framework that addresses estimation challenges in high dimensional regimes where $p \gg n$. For a broad class of link functions between $\langle \mathbf{x}_i,\beta^* \rangle$ and $y_i$, we establish minimax lower bounds that demonstrate the optimality of our estimators in both the classical and high dimensional regimes.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here