Optimal Training of Mean Variance Estimation Neural Networks

17 Feb 2023  ·  Laurens Sluijterman, Eric Cator, Tom Heskes ·

This paper focusses on the optimal implementation of a Mean Variance Estimation network (MVE network) (Nix and Weigend, 1994). This type of network is often used as a building block for uncertainty estimation methods in a regression setting, for instance Concrete dropout (Gal et al., 2017) and Deep Ensembles (Lakshminarayanan et al., 2017). Specifically, an MVE network assumes that the data is produced from a normal distribution with a mean function and variance function. The MVE network outputs a mean and variance estimate and optimizes the network parameters by minimizing the negative loglikelihood. In our paper, we present two significant insights. Firstly, the convergence difficulties reported in recent work can be relatively easily prevented by following the simple yet often overlooked recommendation from the original authors that a warm-up period should be used. During this period, only the mean is optimized with a fixed variance. We demonstrate the effectiveness of this step through experimentation, highlighting that it should be standard practice. As a sidenote, we examine whether, after the warm-up, it is beneficial to fix the mean while optimizing the variance or to optimize both simultaneously. Here, we do not observe a substantial difference. Secondly, we introduce a novel improvement of the MVE network: separate regularization of the mean and the variance estimate. We demonstrate, both on toy examples and on a number of benchmark UCI regression data sets, that following the original recommendations and the novel separate regularization can lead to significant improvements.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods