Optimal Underdamped Langevin MCMC Method

NeurIPS 2021  ·  Zhengmian Hu, Feihu Huang, Heng Huang ·

In the paper, we study the underdamped Langevin diffusion (ULD) with strongly-convex potential consisting of finite summation of $N$ smooth components, and propose an efficient discretization method, which requires $O(N+d^\frac{1}{3}N^\frac{2}{3}/\varepsilon^\frac{2}{3})$ gradient evaluations to achieve $\varepsilon$-error (in $\sqrt{\mathbb{E}{\lVert{\cdot}\rVert_2^2}}$ distance) for approximating $d$-dimensional ULD. Moreover, we prove a lower bound of gradient complexity as $\Omega(N+d^\frac{1}{3}N^\frac{2}{3}/\varepsilon^\frac{2}{3})$, which indicates that our method is optimal in dependence of $N$, $\varepsilon$, and $d$. In particular, we apply our method to sample the strongly-log-concave distribution and obtain gradient complexity better than all existing gradient based sampling algorithms. Experimental results on both synthetic and real-world data show that our new method consistently outperforms the existing ULD approaches.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods