Optimizing a domestic battery and solar photovoltaic system with deep reinforcement learning

10 Sep 2021  ·  Alexander J. M. Kell, A. Stephen McGough, Matthew Forshaw ·

A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems. In this work, we use the deep deterministic policy gradient algorithm to optimise the charging and discharging behaviour of a battery within such a system. Our approach outputs a continuous action space when it charges and discharges the battery, and can function well in a stochastic environment. We show good performance of this algorithm by lowering the expenditure of a single household on electricity to almost \$1AUD for large batteries across selected weeks within a year.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here