Optimizing for Generalization in Machine Learning with Cross-Validation Gradients

18 May 2018  ·  Shane Barratt, Rishi Sharma ·

Cross-validation is the workhorse of modern applied statistics and machine learning, as it provides a principled framework for selecting the model that maximizes generalization performance. In this paper, we show that the cross-validation risk is differentiable with respect to the hyperparameters and training data for many common machine learning algorithms, including logistic regression, elastic-net regression, and support vector machines. Leveraging this property of differentiability, we propose a cross-validation gradient method (CVGM) for hyperparameter optimization. Our method enables efficient optimization in high-dimensional hyperparameter spaces of the cross-validation risk, the best surrogate of the true generalization ability of our learning algorithm.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here