Learning Optimal Topology for Ad-hoc Robot Networks

30 Jan 2022  ·  Matin Macktoobian, Zhan Shu, Qing Zhao ·

In this paper, we synthesize a data-driven method to predict the optimal topology of an ad-hoc robot network. This problem is technically a multi-task classification problem. However, we divide it into a class of multi-class classification problems that can be more efficiently solved. For this purpose, we first compose an algorithm to create ground-truth optimal topologies associated with various configurations of a robot network. This algorithm incorporates a complex collection of optimality criteria that our learning model successfully manages to learn. This model is an stacked ensemble whose output is the topology prediction for a particular robot. Each stacked ensemble instance constitutes three low-level estimators whose outputs will be aggregated by a high-level boosting blender. Applying our model to a network of 10 robots displays over 80% accuracy in the prediction of optimal topologies corresponding to various configurations of the cited network.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here