Optuna: A Next-generation Hyperparameter Optimization Framework

25 Jul 2019  ·  Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, Masanori Koyama ·

The purpose of this study is to introduce new design-criteria for next-generation hyperparameter optimization software. The criteria we propose include (1) define-by-run API that allows users to construct the parameter search space dynamically, (2) efficient implementation of both searching and pruning strategies, and (3) easy-to-setup, versatile architecture that can be deployed for various purposes, ranging from scalable distributed computing to light-weight experiment conducted via interactive interface. In order to prove our point, we will introduce Optuna, an optimization software which is a culmination of our effort in the development of a next generation optimization software. As an optimization software designed with define-by-run principle, Optuna is particularly the first of its kind. We will present the design-techniques that became necessary in the development of the software that meets the above criteria, and demonstrate the power of our new design through experimental results and real world applications. Our software is available under the MIT license (https://github.com/pfnet/optuna/).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here