Oracle-Efficient Online Learning for Beyond Worst-Case Adversaries

17 Feb 2022  ·  Nika Haghtalab, Yanjun Han, Abhishek Shetty, Kunhe Yang ·

In this paper, we study oracle-efficient algorithms for beyond worst-case analysis of online learning. We focus on two settings. First, the smoothed analysis setting of [RST11,HRS22] where an adversary is constrained to generating samples from distributions whose density is upper bounded by $1/\sigma$ times the uniform density. Second, the setting of $K$-hint transductive learning, where the learner is given access to $K$ hints per time step that are guaranteed to include the true instance. We give the first known oracle-efficient algorithms for both settings that depend only on the pseudo (or VC) dimension of the class and parameters $\sigma$ and $K$ that capture the power of the adversary. In particular, we achieve oracle-efficient regret bounds of $ \widetilde{O} ( \sqrt{T d\sigma^{-1}} ) $ and $ \widetilde{O} ( \sqrt{T dK} ) $ for learning real-valued functions and $ O ( \sqrt{T d\sigma^{-\frac{1}{2}} } )$ for learning binary-valued functions. For the smoothed analysis setting, our results give the first oracle-efficient algorithm for online learning with smoothed adversaries [HRS22]. This contrasts the computational separation between online learning with worst-case adversaries and offline learning established by [HK16]. Our algorithms also achieve improved bounds for worst-case setting with small domains. In particular, we give an oracle-efficient algorithm with regret of $O ( \sqrt{T(d |\mathcal{X}|)^{1/2} })$, which is a refinement of the earlier $O ( \sqrt{T|\mathcal{X}|})$ bound by [DS16].

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here