ORBIT: Ordering Based Information Transfer Across Space and Time for Global Surface Water Monitoring

15 Nov 2017  ·  Ankush Khandelwal, Anuj Karpatne, Vipin Kumar ·

Many earth science applications require data at both high spatial and temporal resolution for effective monitoring of various ecosystem resources. Due to practical limitations in sensor design, there is often a trade-off in different resolutions of spatio-temporal datasets and hence a single sensor alone cannot provide the required information. Various data fusion methods have been proposed in the literature that mainly rely on individual timesteps when both datasets are available to learn a mapping between features values at different resolutions using local relationships between pixels. Earth observation data is often plagued with spatially and temporally correlated noise, outliers and missing data due to atmospheric disturbances which pose a challenge in learning the mapping from a local neighborhood at individual timesteps. In this paper, we aim to exploit time-independent global relationships between pixels for robust transfer of information across different scales. Specifically, we propose a new framework, ORBIT (Ordering Based Information Transfer) that uses relative ordering constraint among pixels to transfer information across both time and scales. The effectiveness of the framework is demonstrated for global surface water monitoring using both synthetic and real-world datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here