On Average-Case Error Bounds for Kernel-Based Bayesian Quadrature

22 Feb 2022  ·  Xu Cai, Chi Thanh Lam, Jonathan Scarlett ·

In this paper, we study error bounds for {\em Bayesian quadrature} (BQ), with an emphasis on noisy settings, randomized algorithms, and average-case performance measures. We seek to approximate the integral of functions in a {\em Reproducing Kernel Hilbert Space} (RKHS), particularly focusing on the Mat\'ern-$\nu$ and squared exponential (SE) kernels, with samples from the function potentially being corrupted by Gaussian noise. We provide a two-step meta-algorithm that serves as a general tool for relating the average-case quadrature error with the $L^2$-function approximation error. When specialized to the Mat\'ern kernel, we recover an existing near-optimal error rate while avoiding the existing method of repeatedly sampling points. When specialized to other settings, we obtain new average-case results for settings including the SE kernel with noise and the Mat\'ern kernel with misspecification. Finally, we present algorithm-independent lower bounds that have greater generality and/or give distinct proofs compared to existing ones.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here