Origin of the computational hardness for learning with binary synapses

8 Aug 2014  ·  Haiping Huang, Yoshiyuki Kabashima ·

Supervised learning in a binary perceptron is able to classify an extensive number of random patterns by a proper assignment of binary synaptic weights. However, to find such assignments in practice, is quite a nontrivial task. The relation between the weight space structure and the algorithmic hardness has not yet been fully understood. To this end, we analytically derive the Franz-Parisi potential for the binary preceptron problem, by starting from an equilibrium solution of weights and exploring the weight space structure around it. Our result reveals the geometrical organization of the weight space\textemdash the weight space is composed of isolated solutions, rather than clusters of exponentially many close-by solutions. The point-like clusters far apart from each other in the weight space explain the previously observed glassy behavior of stochastic local search heuristics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here