Paper

Orthogonal-Time-Frequency-Space Signal Design for Integrated Data and Energy Transfer: Benefits from Doppler Offsets

Integrated data and energy transfer (IDET) is an advanced technology for enabling energy sustainability for massively deployed low-power electronic consumption components. However, the existing work of IDET using the orthogonal-frequency-division-multiplexing (OFDM) waveforms is designed for static scenarios, which would be severely affected by the destructive Doppler offset in high-mobility scenarios. Therefore, we proposed an IDET system based on orthogonal-time-frequency-space (OTFS) waveforms with the imperfect channel assumption, which is capable of counteracting the Doppler offset in high-mobility scenarios. At the transmitter, the OTFS-IDET system superimposes the random data signals and deterministic energy signals in the delay-Doppler (DD) domain with optimally designed amplitudes. The receiver optimally splits the received signal in the power domain for achieving the best IDET performance. After formulating a non-convex optimisation problem, it is transformed into a geometric programming (GP) problem through inequality relaxations to obtain the optimal solution. The simulation demonstrates that a higher amount of energy can be harvested when employing our proposed OTFS-IDET waveforms than the conventional OFDM-IDET ones in high mobility scenarios.

Results in Papers With Code
(↓ scroll down to see all results)