OT-driven Multi-Domain Unsupervised Ultrasound Image Artifact Removal using a Single CNN

10 Jul 2020  ·  Jaeyoung Huh, Shujaat Khan, Jong Chul Ye ·

Ultrasound imaging (US) often suffers from distinct image artifacts from various sources. Classic approaches for solving these problems are usually model-based iterative approaches that have been developed specifically for each type of artifact, which are often computationally intensive. Recently, deep learning approaches have been proposed as computationally efficient and high performance alternatives. Unfortunately, in the current deep learning approaches, a dedicated neural network should be trained with matched training data for each specific artifact type. This poses a fundamental limitation in the practical use of deep learning for US, since large number of models should be stored to deal with various US image artifacts. Inspired by the recent success of multi-domain image transfer, here we propose a novel, unsupervised, deep learning approach in which a single neural network can be used to deal with different types of US artifacts simply by changing a mask vector that switches between different target domains. Our algorithm is rigorously derived using an optimal transport (OT) theory for cascaded probability measures. Experimental results using phantom and in vivo data demonstrate that the proposed method can generate high quality image by removing distinct artifacts, which are comparable to those obtained by separately trained multiple neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here