Outage Constrained Robust Secure Beamforming in Cognitive Satellite-Aerial Networks

13 May 2021  ·  Bai Zhao, Min Lin, Ming Cheng, Wei-Ping Zhu, Naofal Al-Dhahir ·

This paper proposes a robust beamforming scheme to enhance the physical layer security (PLS) of multicast transmission in a cognitive satellite and aerial network (CSAN) operating in the millimeter wave frequency band. Based on imperfect channel state information (CSI) of both eavesdroppers (Eves) and primary users (PUs), we maximize the minimum achievable secrecy rate (ASR) of the secondary users (SUs) in the aerial network under the constraints of the interference to the PUs in the satellite network, the quality of service (QoS) requirements of the SUs and per-antenna power budget of the aerial platform. To tackle this mathematically intractable problem, we first introduce an auxiliary variable and outage constraints to simplify the complex objective function. We then convert the non-convex outage constraints into deterministic forms and adopt penalty function approach to obtain a semi-definite problem such that it can be solved in an iterative fashion. Finally, simulation results show that with the transmit power increase, the minimal ASR of SUs obtained from the proposed BF scheme well approximate the optimal value.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here