Over-Squashing in Riemannian Graph Neural Networks

27 Nov 2023  ·  Julia Balla ·

Most graph neural networks (GNNs) are prone to the phenomenon of over-squashing in which node features become insensitive to information from distant nodes in the graph. Recent works have shown that the topology of the graph has the greatest impact on over-squashing, suggesting graph rewiring approaches as a suitable solution. In this work, we explore whether over-squashing can be mitigated through the embedding space of the GNN. In particular, we consider the generalization of Hyperbolic GNNs (HGNNs) to Riemannian manifolds of variable curvature in which the geometry of the embedding space is faithful to the graph's topology. We derive bounds on the sensitivity of the node features in these Riemannian GNNs as the number of layers increases, which yield promising theoretical and empirical results for alleviating over-squashing in graphs with negative curvature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here